	Name:	
Math 3163 Section 01	Practice Final Exam	November 19, 2019

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Construct a field with 27 elements. Be sure to justify why your construction is a field.

2. Suppose that $f(x) \in Z_m[x]$. What criteria is needed on f(x) and m such that $Z_m[x]/\langle f(x) \rangle$ is field with m^n elements. Be sure to justify your conditions.

3. Show $\mathbb{Q}(4-i) = \mathbb{Q}(1+i)$.

4. Let $a, b \in \mathbb{Q}$ with $a \neq 0$. Show $\mathbb{Q}(\sqrt{a}) = \mathbb{Q}(\sqrt{b})$ if and only if there exists some $c \in \mathbb{Q}$ such that $a = bc^2$.

5. Let *F* be a field and $p(x) = x^3 + x + 1 \in F[x]$ such that p(x) is irreducible over *F*. Let *a* be a zero to p(x) and express a^{-1} in terms of the basis elements for F(a). What does this say for a^{-k} in relation to F(a) for some integer *k*.

6. Let f(x) be a nonconstant element of F[x]. If a belongs to some extension of F and f(a) is algebraic over F, prove that a is algebraic over F.

7. Let $p(x) = x^3 - 2$. Show that $p(x) \in \mathbb{Q}[x]$ is irreducible. Compute the splitting field of p(x) over \mathbb{Q} and construct the Galois group of p(x) over \mathbb{Q} . Finally construct the lattice diagram for splitting field over \mathbb{Q} and the lattice diagram for the Galois group.

8. Let $p(x) = x^4 - 7x^2 + 10$. Show that $p(x) \in \mathbb{Q}[x]$ is reducible. Compute the splitting field of p(x) over \mathbb{Q} and construct the Galois group of p(x) over \mathbb{Q} . Finally construct the lattice diagram for splitting field over \mathbb{Q} and the lattice diagram for the Galois group.

9. Let p be an odd prime. Set $q(x) = x^p - 1$. Show that $q(x) \in \mathbb{Q}[x]$ is reducible. Compute the splitting field of q(x) over \mathbb{Q} and construct the Galois group of q(x) over \mathbb{Q} . Finally construct the lattice diagram for splitting field over \mathbb{Q} and the lattice diagram for the Galois group.